

BBB-003-1164002

Seat No.

M. Sc. (Sem. IV) (CBCS) Examination

July - 2021

Mathematics: CMT - 4002

(Integration Theory)

Faculty Code: 003

Subject Code: 1164002

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) Answer any **five** questions.
- (2) Each question carries 14 marks.
- (3) There are 10 questions.

Answer the following seven questions: $(7 \times 2 = 14)$

[14]

- (1) Define: σ –algebra of subsets of a nonempty set X. Also give an example of an algebra which is not a σ –algebra.
- (2) If \mathcal{A} is a σ –algebra of subsets of X and $\mathcal{A} \neq \phi$ then prove that $\phi, X \in \mathcal{A}$.
- (3) Define: Atomic Measure.
- (4) Give only statement of Lebesgue Decomposition Theorem.
- (5) Define: Positive set, negative set and null set.
- (6) Prove that, every compact subset of *K* of a Hausdorff space is closed.
- (7) Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, γ) be complete measure spaces. Then prove that, $\mathcal{R} = \{A \times B \subset X \times Y \mid A \in \mathcal{A} \text{ and } B \in \mathcal{B}\}$ is a semi-algebra.

Answer the following seven questions: $(7 \times 2 = 14)$

[14]

- (1) Define: Measure of a measurable space with example.
- (2) Define: Signed Measure.
- (3) Give the statement of Radon Nikodym Theorem for signed measure.
- (4) Give the statement of Tonelli's Theorem.
- (5) Define: Mutually singular measures with example.
- (6) Let X be a locally compact T_2 –space and K be a compact G_δ –set in X then prove that, $K \in B_a(X)$.
- (7) Prove that, a function is continuous if and only if it is lower semi continuous as well as upper semi continuous.

3 Answer the following *two* questions: $(2 \times 7 = 14)$

[14]

a) Define: Algebra of subsets of a set X. If X is any set, prove that, $\mu: P(X) \to [0, \infty]$ defined by

$$\mu(A) = \begin{cases} \text{the number of elements} & \text{; if A is finite} \\ & \text{∞} & \text{; if A is infinite} \end{cases}$$

is measure on (X, P(X)).

b) State and prove: Hahn Decomposition Theorem.

4 Answer the following *two* questions: $(2 \times 7 = 14)$

- [14]
- 1. Define: Measure absolutely continuous with respect to another measure and mutually singular measures. If (X, \mathcal{A}) is a measurable space and γ , μ are signed measures on (X, \mathcal{A}) , $\gamma \perp \mu$, $\gamma \ll \mu$ then prove that, $\gamma = 0$.
- 2. Let γ be a signed measure on (X, \mathcal{A}) . Then prove that, \exists unique measures γ^+ and γ^- on (X, \mathcal{A}) such that $\gamma = \gamma^+ \gamma^-$ on $\mathcal{A}, \gamma^+ \perp \gamma^-$, where γ^+ and γ^- are positive and negative part of γ respectively.

5 Answer the following *two* questions: $(2 \times 7 = 14)$

[14]

- 1. Let (X, \mathcal{A}, μ) be a finite complete measure space, p, q be extended non-negative real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, g be integrable on (X, \mathcal{A}, μ) and $\left| \int_X g \, \phi \, d\mu \right| \leq M \cdot \left| |\phi| \right|_p$, for all simple measurable function ϕ on X for some M > 0. Prove that, $g \in L^q(\mu)$.
- 2. If μ^* is an outer measure on a set X and $B = \{E \subseteq X/E \text{ is } \mu^* \text{measurable}\}$. Prove that, B is σ -algebra of subsets of X.

6 Answer the following *two* questions: $(2 \times 7 = 14)$

[14]

- 1. Define: Baire measure on the real line. Let $f: \mathbb{R} \to \mathbb{R}$ be monotonically increasing and continuous function on the right. Prove that, \exists a baire measure μ on the real line such that $\mu(a, b] = f(a) f(b)$, $\forall a, b \in \mathbb{R}$ and a < b.
- 2. If X is a countable set and μ is the counting measure on (X, P(X)). Prove that, $L^p(\mu) \cong l^p$, $1 \leq p \leq \infty$.

7 Answer the following *two* questions: $(2 \times 7 = 14)$

[14]

- 1. Let (X, \mathcal{A}) be a measurable space, $\mathcal{D} \subseteq \mathbb{R}$ be dense and B_{α} , $\alpha \in \mathcal{D}$ be measurable in (X, \mathcal{A}) such that $B_{\alpha} \subseteq B_{\beta}$, $\forall \alpha, \beta \in \mathcal{D}$ such that $\alpha < \beta$. Prove that, \exists a unique measurable function $f: X \longrightarrow [-\infty, \infty]$ such that $f(x) \leq \alpha$, $\forall x \in B_{\alpha}$ and $f(x) \geq \alpha, \forall x \in X B_{\alpha}$.
- 2. Let m be the σ -algebra generated by all lebesgue measurable subsets of \mathbb{R} and μ be the lebesgue measure on (\mathbb{R}, m) . Prove that, μ is regular.

8 Answer the following *two* questions: $(2 \times 7 = 14)$

[14]

- 1. Let X be a topological space. Prove that,
 - a) For $F \subseteq X$, $\chi_F: X \to \{0,1\}$ is upper semi continuous if and only if F is closed in X.
 - b) If $f_{\alpha}: X \to \{0,1\}$ are upper semi continuous, $\forall \alpha \in \Lambda$ then prove that, $\inf_{\alpha \in \Lambda} f_{\alpha}$ is also upper semi continuous on X.
- 2. Let X be a locally compact T_2 -space. Then prove that, $B_a(X)$ is the σ -algebra generated by all compact G_δ -sets in X.

9 Answer the following *one* questions: $(1 \times 14 = 14)$

[14]

1. State and prove, Fubini's theorem.

10 Answer the following *one* questions: $(1 \times 14 = 14)$

[14]

1. Let X be a locally compact T_2 —space and $E \in B_\alpha(X)$. Then prove that, either E is σ —bounded or X - E is a σ —bounded set in X. Also prove that, E and X - E both are σ —bounded then X must be σ —compact.